Reducing Communication Cost in a Privacy Preserving Distributed Association Rule Mining
نویسندگان
چکیده
Data mining is a process that analyzes voluminous digital data in order to discover hidden but useful patterns from digital data. However, discovery of such hidden patterns has statistical meaning and may often disclose some sensitive information. As a result privacy becomes one of the prime concerns in data mining research community. Since distributed association mining discovers global association rules by combining local models from various distributed sites, breaching data privacy happens more often than it does in centralized environments. In this work we present a methodology that generates global association rules without revealing confidential inputs such as statistical properties of individual sites and yet retains high level of accuracy in resultant rules. One of the important outcomes of the proposed technique is that it reduces the overall communication costs. Performance evaluation of our proposed method shows that it reduces the communication cost significantly when we compare with some well-known distributed association rule mining algorithms. Furthermore, the global rule model generated by the proposed method is based on the exact global support of each itemsets, and hence diminished inconsistency, which indeed occurs when global models are generated from partial support count of an itemset.
منابع مشابه
Privacy preserving association rules mining on distributed homogenous databases
Privacy is one of the most important properties that an information system must satisfy. In these systems, there is a need to share information among different, not trusted entities, and the protection of sensible information has a relevant role. A relatively new trend shows that classical access control techniques are not sufficient to guarantee privacy preserving when data mining techniques a...
متن کاملFast Cryptographic Privacy Preserving Association Rules Mining on Distributed Homogenous Data Base
Privacy is one of the most important properties of an information system must satisfy. In which systems the need to share information among different, not trusted entities, the protection of sensible information has a relevant role. A relatively new trend shows that classical access control techniques are not sufficient to guarantee privacy when data mining techniques are used in a malicious wa...
متن کاملSecure Privacy Preserving Mining of Association Rule in Horizontally Distributed Databases
Data mining is used to extract important knowledge from large datasets, but sometimes these datasets are split among various parties. Association rule mining is one of the data mining technique used in distributed databases. This technique disclose some interesting relationship between locally large and globally large item sets and proposes an algorithm, fast distributed mining of association r...
متن کاملPrivacy-Preserving Distributed Association-Rule-Mining Algorithm
Data mining is a process that analyzes voluminous digital data in order to discover hidden but useful patterns from digital data. However, the discovering of such hidden patterns has statistical meaning and may often disclose some sensitive information. As a result, privacy becomes one of the prime concerns in the datamining research community. Since distributed association mining discovers ass...
متن کاملSemi-Trusted Mixer Based Privacy Preserving Distributed Data Mining for Resource Constrained Devices
In this paper a homomorphic privacy preserving association rule mining algorithm is proposed which can be deployed in resource constrained devices (RCD). Privacy preserved exchange of counts of itemsets among distributed mining sites is a vital part in association rule mining process. Existing cryptography based privacy preserving solutions consume lot of computation due to complex mathematical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004